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Establishing interrelations between size, compactness, and three-dimensional shape in biomolecules is
important for a better understanding of the factors governing their folding features and their biological
function. Whereas size and compactness can be characterized by parameters such as the radius of gyra-
tion, the description of folding features is less well defined. Recently, we have introduced the probability
of overcrossings in two-dimensional projections of a rigid backbone as a descriptor of self-entanglements.
This function provides a simple and intuitive characterization: the more complex the entanglements, the
larger the mean number of overcrossings. In this work, we study relationships between size and entan-
glements on a special subclass of biomolecules with a global structural constraint: the family of native
protein conformations which are the most compact within a range of amino acid residue numbers. Ini-
tially, we use a set of 373 experimental protein backbones exhibiting very diverse lengths, composition,
and structural features. Within this set, we have located the proteins with the smallest radii of gyration
for fixed ranges of monomer numbers. For this class of proteins, we observe power-law scaling behavior
in size and entanglement complexity in terms of the residue number. The results suggest that there are
two distinct regimes of scaling characterizing short compact proteins and long compact proteins, respec-
tively. The change of regime appears to be localized roughly around 300 amino acid residues. We pro-
pose that this difference correlates with a change in the content of secondary structure for compact pro-
teins: the content of B strands for short chains is almost twice as large as that of longer chains, the latter
in turn being much richer in a helices. In summary, the work establishes that in forming a very compact
polypeptide there are some constraints among the number of residues, the radius of gyration, the entan-
glement complexity, and the content of secondary structure of the molecular chain. Thus the degree of
compactness in heteropolymers appears to exhibit more complex features than those found in homopoly-

mers.

PACS number(s): 87.15.He, 82.20.Wt, 05.90.+m

I. INTRODUCTION

The characterization of a polymer’s shape, as opposed
to its size and compactness, is a task that cannot fully be
solved with a single technique or addressed by a single
descriptor. Whereas global geometric descriptors, such as
the radius of gyration R, provide well-known measures
of size (and, to some degree, compactness),’ there is no
unique feature that can be associated with ‘“shape” as a
property of a polymer chain. This lack of precise charac-
terization hampers the analysis of rigid or flexible protein
backbones. A common strategy is to analyze the oc-
currence of highly structured sections of a backbone (e.g.,
a helices and S strands). However, this may not be very
informative in monitoring unfolding or melting, when the
backbone is in a rather unstructured state, midway be-
tween the native structure and a random coil [1-3].
Visually inspecting the polymers in such a state often
fails to reveal any valuable information.

The primary and tertiary structure of a protein contain
the two key elements needed for a detailed description of
the a-carbon backbone: the connectivity of the main
chain atoms and their spatial positions (the geometry), re-
spectively. (We use the term ‘“‘connectivity” in the sense
of a matrix establishing which a-carbon atoms are
“linked” because of being associated to sequential resi-
dues in the primary structure.) Any useful description of
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the degree of folding in a backbone has to take into ac-
count these two pieces of information. Although there is
no natural measure for the degree of folding, a recent ap-
proach provides a satisfactory representation of the com-
plexity and type of entanglements found in a chain [4-7].
The methodology uses the probability of finding a rigid
three-dimensional (3D) backbone in a two-dimensional
(2D) projection with N overcrossings or double points.
For an n-residue backbone, these probabilities are indi-
cated as { 4y(n)}, and they constitute a global descriptor
of self-entanglements in a chain [6]. (We use the concept
of “self-entanglement” as a broad notion conveying the
occurrence of turns, loops, and folds in a single polymer
molecule.) For a given n value, a chain may exhibit radi-
cally different types of folds. A chain adopting a B-strand
form will exhibit essentially no self-entanglements. In
contrast, the chain will appear mildly entangled if folded
as an «a helix, and even further entangled in some random
coil configurations. Even though some of the latter struc-
tures may exhibit comparable geometries, their shapes
can readily be distinguished by using the probability dis-
tribution { A5(n)}. A key observation is as follows: the
more entangled structures will have a higher mean num-
ber of overcrossings [6]. This mean number N is given as

_ maxN
N='S Ndy(n), $))
N=0
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where max N is the maximum number of overcrossings
compatible with a given architecture. For linear (non-
branched) chains, max N =(n —2)(n —3)/2, n 2 3. De-
pending on the actual folding, the distribution { Ay(n)}
will vary and so will the N value. A related shape
descriptor is the maximum probability of overcrossings,
A*. These two parameters, derived from the overcross-
ing probabilities { Ay(n)}, have been used to monitor
structural stability of short chains along molecular dy-
namics trajectories [7] and the configurational state of
random polymers and some proteins [8]. Recently, we
have shown that configurational averages of these shape
descriptors also follow approximate power-law scaling
with the number of residues, n [8]. This type of behavior
is well known for the configurationally averaged radius of
gyration [9] (Rg ),

<R(;>~knv, (2)

where the critical exponent v takes the value | for ideal
chains in 6 conditions (poor solvent) [10], approximately
0.588 in good solvents (the fully developed excluded-
volume interaction above 6 conditions) [11], and 1 in the
case of ‘“collapsed” polymers below the 6 conditions
[12,13]. An additional scaling regime has recently been
proposed [14]. From now on, we shall refer to v as the
‘“size exponent.”

For the shape descriptors of entanglement complexity
in model polymers, we have found that similar relations
hold [8]:

(A*)~an?, (3)

(N)~an®. 4)

For self-avoiding walks with variable excluded-volume
interaction and 50=<n <500, we have estimated that

=~ —1.00£0.03 and B~1.410.1 [8]. The exponents ap-
peared to change little with the excluded volume. That
is, they do not depend strongly on whether the dominant
configurations are ideal, compact, or swollen [8]. The
dependence on the configurational state is mostly con-
veyed by the preexponential factors a and a in Egs. (3)
and (4). These values for b and 8 must be considered as
“effective” critical exponents for medium-size polymers,
and may not represent the correct behavior for n — .
Orlandini et al. [15] have recently studied the behavior
of the mean number of overcrossings in self-avoiding
walks with very large n values and estimated S~1.13 as a
lower bound to the asymptotic limit in ideal and good
solvents (above the 6 point). From now on, we shall refer
to B as the “entanglement exponent.”

The number of monomers needed to reach the truly
asymptotic limit of N appears to be beyond the typical
number of amino acid residues found in proteins. As we
showed in Ref. [8], the effective exponent B=~1.4 de-
scribes accurately not only the configurationally averaged
shapes of model polymers but also the average shape of
most proteins. In Ref. [8], a set of 197 proteins was ana-
lyzed. The set was diverse and contained no structural
bias. The proteins included were selected among all
available structures in the Brookhaven Protein Data

2601

Bank (PDB) [16]. We found that, in a set with all possi-
ble configurational features (i.e., compact as well as swol-
len proteins) and all possible numbers of amino acid resi-
dues, Eq. (2) was not satisfied. In contrast, Egs. (3) and
(4) for the shape descriptors held more accurately. This
result indicated an apparent universality in the scaling of
shape descriptors for proteins with very diverse struc-
tures.

Our previous work was not concerned with any special
structural feature, either local or global [8]. However, for
many applications of relevance to biochemistry and
biophysics, it is important to establish relations between
size and shape restricted to macromolecules with well-
defined structural profiles. In this work, we carry out a
detailed analysis of the scaling behavior of molecular size
and molecular shape descriptors for a class of proteins
with a specified structural (global) constraint: those
whose actual native conformation is the most compact
among all other proteins of comparable length.

A number of measures of compactness have been pro-
posed in the literature, based on the number of chain con-
tacts in a lattice model [17,18] and on the deviation from
a reference structure [19]. Here, we are interested in a
simple procedure that characterizes the compactness in
proteins at their actual experimental (native) structures,
such as the ones available from the Brookhaven Protein
Data Bank. The radius of gyration defined by the main
chain (a-carbon) atoms is a possible alternative, although
it neglects the distinct contribution to the excluded
volume of the variable monomers in heteropolymers.
Chan and Dill have defined a “minimum radius of gyra-
tion” which takes into account the protein composition,
by considering an idealized close packing of the sequence
of amino acids within a sphere [20]. In our case, we
resort to a simpler procedure which provides a set of very
compact proteins with little composition bias. This set of
proteins is determined by using a large and diverse set of
experimental structures and then selecting those with the
smallest R; value within a given range in the number of
amino acid residues. In this manner, by selecting various
ranges, the extracted radii of gyration become somewhat
“averaged” over variable compositions. For complete-
ness, we include in this work an analysis of compactness
for this set of proteins by employing also the criterion in
Ref. [20].

For the above group of compact proteins, we analyze
the interrelation between size and molecular shape. From
these results, we derive conclusions on the conditions pre-
valent to form very compact proteins with a given chain
length. Size and compactness are described with the ra-
dius of gyration. Shape features are conveyed by the
complexity of self-entanglements, measured in terms of N
and A*.

The article is organized as follows. Section II discusses
the working set of proteins, the technical details on the
evaluation of molecular size and shape descriptors, and
their precision. We discuss also the criteria followed for
the location of the subset of most compact proteins and
compare it with other procedures in the literature. Sec-
tion III presents the scaling behavior of various descrip-
tors for compact proteins. A brief analysis of the estima-
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tion of asymptotic exponents in the limit of very large
number of amino acid residues is also given. Section IV
discusses the change in the content of secondary struc-
ture for compact proteins of variable length. We propose
a correlation between the secondary structural content
and the scaling behavior of shape and size descriptors.
Section V closes with further comments and a summary
of conclusions.

II. WORKING SET OF PROTEINS AND ACCURACY
OF SHAPE DESCRIPTORS

Compactness and entanglement complexity are ana-
lyzed on a set of 373 proteins (from now on referred to as
the “working set of proteins™). The set includes all dis-
tinct proteins deposited in the Brookhaven PDB by 1992
(i.e., discounting structural updates and equivalent pro-
teins obtained from different biological sources). More-
over, we have added to the working set several mutant
proteins and variations on the same protein whenever
some significant difference could have been expected from
the biological source. Finally, the set also includes several
proteins deposited as ‘“‘prerelease” in the PDB. Briefly,
this large working set [21] represents accurately the
structural variety of all proteins known to date.

In all cases, we have considered the actual number of
residues in the experimental 3D structures. This number
may differ sometimes from the number of amino acids in
the primary sequence. In the cases where a protein forms
a quaternary structure, only one protein monomer was
considered at a time. Figure 1 gives a histogram of the
proteins in the working set as a function of the number of
amino acid residues, n. Note that the most frequently
found backbone lengths correspond to values of n be-
tween 100 and 350. Proteins with more than 600 residues
are uncommon.

For all structures in the above set, we have computed
size and entanglement complexity descriptors. Following
the common approach, the analysis is confined to the a-
carbon backbone (i.e., only one main chain atom is re-
tained per residue). Figure 2 displays the radius of gyra-
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FIG. 1. Histogram of the working set of 373 proteins

classified in terms of the number of amino acid residues. (The
smallest protein in the set has 8 residues and the largest 823.
Frequencies are given for regular intervals of length 43. Note
the lack of any proteins between n =698 and 741. We did not
find any proteins with these numbers of residues in the data
bank. As the figure indicates, most proteins are found in the
range 100 <n <350.)
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FIG. 2. Logje-log;o plot of the radius of gyration as a func-
tion of the number of amino acid residues for the proteins in the
entire working set.

tion R; as a function of n. The lack of a single scaling
behavior is evident. Figure 2 reveals that the set includes
proteins in open as well as compact structures [22]. Note
that the dispersion is not symmetrical: proteins with
smaller radius of gyration appear to follow a better
defined scaling [8,23]. We focus our study on this latter
subset of proteins. These correspond to the “most com-
pact proteins,” since they exhibit the smallest radius of
gyration compatible with a given number of amino acid
residues.

For the working set of proteins, we have computed the
shape descriptors N and A4*. The strategy and algo-
rithms for the calculation of { Ay(n)} for protein back-
bones have been discussed in detail elsewhere and will not
be repeated here [4]. For completeness, we make only a
few remarks on the numerical evaluation of descriptors N
and A*. The overcrossing probabilities in the chain are
computed in practice from a large number of random
projections of the protein backbone to planes tangent to
the smallest sphere (centered at the center of mass) en-
closing the backbone completely. The overcrossing
descriptors are evaluated from an average of six over-
crossing spectra { Ay(n)} for each protein. The six spec-
tra correspond to computations involving 4000, 6000,
8000, 10000, 15000, and 20000 random projections, re-
spectively. The accuracy for a given number of projec-
tions decreases with the length of the chain. Figure 3 il-
lustrates the accuracy achieved in the most disadvanta-
geous cases, namely, those of aconitase (top) and
glycogen phosphorylase (bottom), which are the largest
proteins in our working set. Despite the large error, the
results are accurate enough to estimate 4* and N reli-
ably. Note that the different structural features in these
proteins are reflected by different overcrossing spectra.
In the case of aconitase, we observe the presence of a
“shoulder” about N ~ 580.

Figure 4 gives the shape descriptor N for all proteins in



0.014

0.012

0.001 |

6ACN (n=754)
Aconitase

AN 0.008
0.006 |

0.004

o i - t 1=

0 100 200 300 400 500 600 700 800

Number of overcrossings N

0.014

0.012 |

N i
I IGPB (n=823)
0.001 | Glycogen Phosphorylasc

AN 0.008

0.006

0.004 !

0 R

0O 100 200 300 400 500 600 700 800

Number of overcrossings N

FIG. 3. Overcrossing spectra of the two largest proteins in
the working set. [Since there are very few long proteins, aconi-
tase (n =754) and glycogen phosphorylase (n =823) end up
also included in the set of most compact proteins known to date.
The figure on the right illustrates one possible placement of the
protein backbone. These two proteins illustrate the accuracy
limit with which we can evaluate numerically the overcrossing
probabilities. However, despite the large relative uncertainties,
the differences in folding features between these two structures
can readily be recognized in the spectra.]

the working set. The scaling behavior for » > 100 is evi-
dently better defined than that for R; in Fig. 2. Due to
the seemingly small dependence of N on protein
configurational state, it is difficult to extract information
from Fig. 4 on any differential scaling associated with
specific structural features. For this reason we resort to
the size descriptor R to select a subset of compact pro-
teins.

The definition of the subset of most compact proteins
depends on the choice of an “amino acid residue win-
dow” An. Because sets of proteins with exactly the same
number of residues n are very limited, one is forced to
select structures with the smallest R; within a “window”
of n values of length An. We have explored several possi-
ble choices of An values. If An is too small, proteins that
are not very compact are included in the set. In contrast,
if An is too large, the final subset is very small. In this
work, we discuss the results obtained with two reasonable
choices, An =50 and 10. Short polypeptides have been
excluded since they trivially lead to small R; values. For

51 SCALING REGIMES OF MOLECULAR SIZE AND SELF-ENTANGLEMENTS . .. 2603

1000

100 +

10

Z|
= ohm
[

1 10 100 1000

FIG. 4. Logo-log;, plot of the mean number of overcross-
ings, N, as a function of the number of amino acid residues for
the proteins in the entire set.

this reason, the selections have started from n =20. In
the case of An =50, this corresponds to finding the small-
est protein in each of the ranges [20,49], [50,99],
[100,149], etc., up to [800,849]. Similarly, in the case
An =10, the ranges considered are [20,29], [30,39], etc.,
up to the last one, [820,829].

A An =50 window is an optimum choice since it
renders a fairly regular and complete set of compact pro-
teins, with only the range 650 <n <749 failing to pro-
duce a sample. The set of 15 proteins is listed in Table I
together with their size and shape descriptors, as well as
their biochemical function. Most proteins in the set are
involved with electron transport, oxygen transport, or
redox and hydrolysis reactions [20]. The set certainly
contains the most compact proteins known for n <600.
For longer chains, this statement must be qualified by the
fact that very few proteins are found in the PDB. The
choice of a An =10 window is less satisfactory: a set of
59 compact proteins with n =20 is obtained, with 22 oth-
er ranges failing to produce a sample. The interrelations
between size, shape, and content of secondary structures
for the compact proteins obtained with the An =50 and
10 windows are discussed in Secs. III and IV.

The above use of the radius of gyration R (defined by
the a-carbon coordinates) to estimate compactness
neglects the steric contribution of the various side chains.
However, the use of large windows, such as An =50 and
An =10, within a set of proteins with a large variation in
composition should produce a sample of structures which
are very compact over all possible compositions. Note
that we do not select the protein with the smallest R for
a given n, but rather select the value of n which provides
the smallest possible R; among all proteins within a
range of amino acid residues. This is a very stringent
criterion. Nevertheless, we have further tested this
choice by analyzing the compactness of the proteins in
Table I with a different criterion. A composition-
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TABLE I. Geometric and shape descriptors for the most compact proteins found in the working set
of 373, classed within ranges of An =50. (The proteins listed correspond to those with the smallest ra-
dius of gyration found in the ranges of n: 0-49, 50-99, 100-149, ..., and 800-849. Note that there
are no proteins in the list for windows of 650—699 and 700—749 amino acid residues. In order to de-
scribe properly features in medium-size to large-size proteins, molecules with n <20 were excluded

from the analysis.)

Protein
(PDB code) n Rg (A) N A* Protein function

2ETI 28 7.010 4.77 0.2882 Protein (trypsin) inhibitor
IRDG 52 9.557 11.85 0.1297 Electron transport

4FD1 106 12.071 33.46 0.0548 Electron transport

2SOD 151 13.798 56.24 0.0550 Ozxidoreductase

1SGT 223 15.790 101.02 0.0277 Hydrolase (serine proteinase)
3TEC 279 16.210 151.36 0.0259 Hydrolase (serine proteinase)
3CPA 306 17.866 153.80 0.0186 Hydrolase

1ALD 363 19.192 197.72 0.0144 Aldehyde lyase

7ENL 436 21.029 250.13 0.0128 Carbon-oxygen lyase

1IGLY 470 21.004 279.34 0.0142 Hydrolase

1COX 502 21.814 301.76 0.0131 Oxidoreductase

1GAL 581 22.831 373.99 0.0084 Oxidoreductase

1LLA 600 23.955 367.40 0.0136 Oxygen transport

6ACN 754 25.290 524.48 0.0088 Carbon-oxygen lyase

1GPB 823 27.547 552.58 0.0087 Glycogen phosphorylase

dependent virtual “minimum” radius of gyration, (Rs),,,
has been proposed in Ref. [20]. This radius (Ry),, is cal-
culated as (%)l/ 2R *, where R * is the radius of a sphere
formed by the idealized close packing of the particular
amino acids in a protein within a uniform spherical dis-
tribution leading to the same actual molecular volume
[24]. Therefore (R),, becomes dependent on composi-
tion through the total volume enclosed by the protein
molecular surface. Results for (Rg),,, further assuming
that the maximum packing density is equal to that at the
core of a globular protein, are given in Ref. [20] for ten
proteins with 42 <n <316. The comparison between
(Rg),, and the actual R; value derived from the a-
carbon coordinates can be used to assess the compactness
of the protein. Chan and Dill show results for ten pro-
teins, exhibiting deviations from 3% to 15% over the
ideal (R ),, values. Following this criterion, we find that
the majority of the proteins in Table I are indeed the
most compact found within their An windows. For the
proteins in Table I with 52=<n <306, we find
[Rg—(Rg),, 1/(Rg),, =(3.8+0.9)%. In  contrast,
longer proteins are also found to be maximally compact
according to this criterion but their R; values are at least
10% above the corresponding (R ),,. The significance of
this change in the extent of the compactness is addressed
in the next sections.

Summarizing, the results indicate that the selected pro-
teins (Table I) are among the most compact derived when
invoking various criteria. Consequently, we believe that
the relation between their molecular shapes and the num-
ber of amino acid residues n should reflect the constraints
required to adopt very compact folding over all possible
variations in composition. In other words, the features
observed should relate to compactness in absolute terms
and not to the frequency of occurrence of a particular

amino acid among the proteins considered in the working
set.

III. MOLECULAR SIZE AND ENTANGLEMENT
COMPLEXITY IN COMPACT PROTEINS

We have studied the behavior of all molecular shape
descriptors for the set of most compact proteins in Table
I. From our analyses, the first protein in the set (2ETI,
n =28) appeared to be too short to be included in the
analysis of scaling behavior. The results below are
confined to the remaining 14 proteins (n =52). For a
proper comparison, the proteins selected with the
An =10 window start also from n =52 (1IRDG).

Figure 5 shows the results for the radius of gyration us-
ing the An =50 window. A linear regression produces
the following estimation of the critical exponent v [cf. Eq.
(2)]:

InR; ~(0.380+0.023) Inn +(0.7240.13) ,
@,=0.9955, 52<n <823 [14 pts.],

(5)

where slope and intercept are always given with 95%
confidence intervals, @, is the correlation coefficient asso-
ciated with the estimation of v, and R; is expressed in A.
The value in square brackets indicates the number of
compact proteins in the fitting. The exponent estimated
in (5) for the most compact proteins, v=0.38=%0.02, does
not agree with the behavior expected from the collapsed-
polymer model [23]. As mentioned in Sec. I, such a mod-
el would require an exponent v=0.333. This latter
behavior appears in Fig. 5 as a dashed line. The agree-
ment with the collapsed-polymer model seems to be re-
stricted to the case of short compact proteins. Proteins
longer than ca.300 residues deviate systematically from
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FIG. 5. Logo-logo plot of the radius of gyration as a func-
tion of the number of amino acid residues, restricted to the fam-
ily of most compact proteins in the working set, derived with a
An =50 window and n >50. (Notice the systematic deviation
with respect to the collapsed-polymer model for chains longer
than 300 residues. The dashed line represents the slope —;-, ex-
pected for collapsed homopolymers.)

this model behavior (cf. Fig. 5). Regression analyses
confined to short and long proteins, respectively, indicate
a difference in scaling behavior:

InR ; ~(0.33940.046) Inn +(0.92+0.23) ,
©,=0.9952 ,
InR ; ~(0.41340.047) Inn +(0.52+0.30) ,
©,=0.9918 ,

(6)
52<n <306 [6pts.],

(7
306<n <823 [9 pts.] .

Results are comparable, yet less accurate, when using the
smaller An =10 window. For the complete range of pro-
teins we find

InR; ~(0.40240.022) Inn +(0.63£0.12) ,
©,=0.9810,

(8)
52<n <823 [56 pts.],
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whereas for the subsets of short and long chains, divided

as before at about 300 residues, the results are
InR;~(0.341+0.025) Inn +(0.924+0.13) ,
©,=0.9850, 52<n <306 [26 pts.], )
InR; ~(0.403+0.084) Inn +(0.63+0.51) ,

©,=0.8773 ,

(10)
306 <n <823 [31 pts.] .

Comparing the slopes in Egs. (5)-(7) and (8)-(10), we
note an agreement between the apparent scaling ex-
ponents for both regimes. However, the correlation is
very poor for long chains if the window for locating com-
pact proteins is made as small as An =10. This is an in-
dication that some noncompact structures are included in
the set with the smaller An window. For this reason, we
shall restrict the analysis of differential scaling in other
shape descriptors to the more controlled set defined with
the larger An =50 window. _

The mean numbers of overcrossings, N, are displayed
in Fig. 6 as a function of the number of residues for the
most compact proteins. A comparison with Fig. 4 indi-
cates a smaller dispersion when only compact proteins
are considered, especially in the case of An =50. For this
shape descriptor, we also observe different scaling
behavior for short and long compact proteins. A linear
regression for all compact proteins gives

InN ~(1.40+0.04) Inn +(—3.0£0.2) ,
Cz=0.9989 , 52<n <823 [14 pts.],

(11)

whereas the restrictions to short and long compact pro-
teins provide

InN ~(1.48+0.08) Inn +(—3.410.4) ,
C=0.9992, 52<n <306 [6pts.],

(12)

InN ~(1.31+0.07)Inn +(—2.410.4) ,
@p=0.9984 , 306<n <823 [9 pts.],

(13)

respectively. Note that the quality of the correlations for
R and N is comparable in the case of the compact pro-
teins, whereas it differs largely when viewed over the

[ Window used: A n=10]

[ Window used: A n=50 ]

1000.0
/ 'I"-

100.0 - FIG. 6. Log;,-log;o plot of the mean num-
- ber of overcrossings, N, as a function of the
N  10.0 - - number of amino acid residues. [Results are
- - given for the most compact proteins in the
working set, derived with two windows,

1.0 ) An =10 (left) and An =50 (right).]
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whole working set of proteins. As was found in the case
of the radius of gyration, the difference in scaling ex-
ponents 3 between the two series of compact proteins is
significant [cf. Egs. (12) and (13)]. The results above sug-
gest the following.

(a) The most compact proteins with fewer than 300 am-
ino acid residues are characterized by a ‘“‘size exponent”
v~0.34+0.05 and an ‘“entanglement exponent”
f~1.51+0.1.

(b) For compact proteins with more than 300 residues
the corresponding exponents are v~0.41+0.05 and
B~1.3+0.1. Therefore only the shorter compact pro-
teins seem likely to appear as truly ‘collapsed”
configurations.

The reliability of the approximate point for the change
in scaling regimes (ca. 300 residues) has been checked in
two different ways. Table II shows the estimated ex-
ponents v and [ obtained by least-squares fittings of series
of five consecutive proteins from Table I, as well as their
correlation coefficients @, and €. The five proteins con-
sidered define an interval [n;,n,] of approximately 200
residues in length, for proteins with less than 582 residues
(i.e., ny <582). The quality of the correlations for both
exponents depends on the location of the interval [n;,n,].
From Table II, the following cases can be distinguished.

(i) The correlation is high in the range of [52,279] resi-
dues, which provides the exponents v~0.33 and S~ 1.50.

(ii) The correlation decreases when the interval [7;,n,]
is displaced towards longer compact proteins. The
poorest correlation in both exponents appears in the
range [223,436] centered about n =~ 329.

(iii) Both correlations improve again over the ranges
[306,502] and [363,581], giving exponents v~0.40 and
B~1.36.

(iv) Correlations are poor again over the last three
series of five proteins, although the derived exponents v
and f3 are consistent with the values found in (iii). A like-
ly reason for these poorer correlations is that the ranges
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of amino acid residues become erratic over the last three
ranges, due to the reduced sample of available experimen-
tal compact proteins. Whereas the range of residues in
the cases (i)—(iii) is ny—n; ~208+13, the last three ranges
are 164, 284, and 321, respectively.

In conclusion, the results in Table II are consistent
with the existence of two distinct scaling regimes of size
and shape for compact proteins, approximately separated
at n =300. Note that the change in correlations is exact-
ly the same for both exponents, even though they are as-
sociated with two independent properties (‘“‘size” and
“shape’”). The more clearly defined behaviors are found,
approximately, for proteins with numbers of residues
50 <n <300 (“short” proteins) and 300 <n <550 (“long”
proteins). We believe that the correlations involving only
proteins with more than 450 residues are not reliable, due
to the irregularity of the sampling in the region.

The correlations in Table II are derived by sequences
of linear fittings with a constant number of data points.
This approach does not produce fittings with a constant
interval length in a logarithmic plot. For this reason, we
have also tested linear correlations of the form InR vs
Inn and InN vs lnn, where the length of the interval is
kept constant [i.e., In(ns/n;)=const]. Linear regressions
were performed on groups of compact proteins satisfying
approximately the condition In(n,/n;)~1.0, and the re-
sults appear in Table III. (Note that the number of pro-
teins in each correlation is no longer constant.) The
findings in Table III are consistent with our previous ob-
servations: short compact proteins and long compact pro-
teins can be differentiated by their pairs of apparent scal-
ing exponents v and 8. The values given for these pairs
in Tables II and III agree. Moreover, the change be-
tween the two regimes appears to take place somewhere
midway in the interval [151,436] (cf. Table III). This in-
terval is centered at n =293, which provides an estima-
tion of the transition point not far from the previous one
n =300 (cf. Fig. 2).

TABLE II. Estimation of the scaling exponents v and f3 for the radius of gyration R; and the mean
number of overcrossings, N, for the most compact proteins found in the working set of 373, classed
within ranges of An =50. The table gives v and B estimated with 95% confidence and the respective
correlation coefficients @, and €p. [The exponents are computed by analyzing series of five consecutive
proteins. The changes in the correlation coefficients suggest two distinct scaling regimes. The two re-
gimes appear to be characterized by (1) v=~0.33, B=1.5 for 50 <n <300, and (2) v~0.40, 8~1.3 for
300 <n <550. Results involving proteins with n > 600 may not be reliable since it is difficult to assess if
the few structures in this range correspond to truly compact proteins.]

Range of five proteins

considered (n; —n) v (£95% error) e, B (£95% error) Cp

52—279 0.33+0.05 0.996 1.50+0.08 0.9994
106— 306 0.34+0.10 0.987 1.49+0.18 0.9978
151 —-363 0.36+0.16 0.973 1.45+0.26 0.9951
223436 0.45+£0.20 0.971 1.31+0.32 0.9914
279—470 0.49+0.20 0.977 1.24+0.30 0.9916
306— 502 0.40+0.10 0.990 1.36+0.07 0.9996
363—581 0.36+0.12 0.984 1.35+£0.08 0.9995
436— 600 0.4010.22 0.955 1.27+0.29 0.9924
470—754 0.39£0.16 0.978 1.33+0.24 0.9952
502— 823 0.44+0.19 0.974 1.27+0.27 0.9933
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TABLE III. Estimation of the scaling exponents v and 8 for compact proteins in the limit of a large
number of amino acid residues. The computations are performed by linear regressions in ranges of »
values of approximately the same length in a logarithmic plot. The results below correspond to ranges
of approximately length 1, that is, including all proteins with numbers of monomers between n; and the
closest integer to ny~e Xn;. (The exponents v and B are given with their statistical errors at a 95%
confidence level. The corresponding correlation coefficients are €, and @, respectively.)

Range of proteins

considered (n;—n;) In(n,/n;) v (£95%) e, B (£95%) Cp
52—151 1.066 0.34+0.16 0.999 1.46%0.03 1.0000
106—279 0.968 0.31+0.14 0.989 1.55+0.19 0.9992
151—436 1.060 0.39+0.11 0.979 1.41£0.18 0.9959
223 —600 0.990 0.431+0.06 0.988 1.30+0.09 0.9969
279 —754 0.994 0.43+0.06 0.987 1.28+0.09 0.9971
306— 823 0.989 0.41%0.05 0.992 1.31£0.07 0.9984

Results in Table III can be used to estimate the scaling
behavior for virtual, very long compact proteins (n — o).
Figures 7 and 8 display the approximate scaling ex-
ponents v and 3 as a function of 1/n,. The results in-
clude linear regressions on the groups of proteins satisfy-
ing the constraints In(n,/n;)~1.0 and In(n,/n;)=~1.5 as
closely as possible. (None of the linear regressions in-
cludes exclusively proteins with n >450.) Despite the
large dispersions, we can make rough assessments of the
scaling exponents v, and 3, in the large » limit:

v, ~0.44+0.06 , B,~1.2010.14 . (14)

The result for v,, would imply a conformational state
below the 0 conditions for long compact proteins, yet far
from the collapsed-polymer situation. The value for B
agrees with the result in Ref. [15] for self-avoiding walks
with attractive interaction (8, ~1.18). These values for
n>>1 are conjectural and derived from the available

0.6
0.57 7
0. Iﬂﬂ[
I
14 0.3+
0.2
0.1+
0 t t ——t
0 0.002 0.004 0.006 0.008
I/ng

FIG. 7. Estimation of the scaling exponent v for the radius of
gyration in the limit of a very large number of residues. The
effective exponents v have been computed by linear regressions
of InRg vs Inn, with intervals of [n;,n,] with an approximately
constant In(n,/n;) ratio, for the compact proteins in the
An =50 window. [The figure shows the results obtained with
approximate In(n,/n;) ratios of 1.0 and 1.5. The estimated ex-
trapolated value is shown as an open white sector in the limit
ny—o0.]

sample of compact proteins. It remains to be seen if they
hold after very long compact proteins are discovered or
experimentally synthesized.

The discussion of shape descriptors for compact pro-
teins can be completed by considering the maximum
probability of overcrossings, A4 *. The dispersion for this
shape descriptor is larger than the dispersions in Ry and
N for the same sets of proteins. In the case of An =50, a
linear regression gives

In4*~(—1.05+0.09) Inn +(2.1%0.5) ,
©,=0.9889 , 52<n <823 [14 pts.],

(15)

which indicates a scaling exponent b~ —1.0, as found
for model polymers [8]. However, no difference in the
behavior for short and long compact chains can be as-
sessed from A4 *. For the analysis of scaling in the entan-
glement complexity of proteins with specific structural
features one must use the mean number of overcrossings.
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FIG. 8. Estimation of the scaling exponent 8 for the mean
number of overcrossings in the limit of a very large number of
residues. The effective exponents 8 have been computed by
linear regressions of InN vs Inn, within intervals of [#;,n ] with
an approximately constant In(n,/n;) ratio, for the compact pro-
teins in the An =50 window. [The figure shows the results ob-
tained with approximate In(n,/n;) ratios of 1.0 and 1.5. The es-
timated extrapolated value is shown as an open white sector in
the limit n, — o0.]
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IV. VARIATIONS IN THE CONTENT OF SECONDARY
STRUCTURE FOR COMPACT PROTEINS

The distinct behavior of molecular size and entangle-
ment complexity for short and long compact native pro-
tein structures may reflect a fundamental difference in
their structures. As discussed above, the ‘“‘size exponent”
v for the short chains is close to that of the collapsed-
polymer model (v=1), whereas a larger value is found in
the longer chains. The result implies that the short com-
pact proteins are actually “more compact” than the com-
pact proteins with n > 300 residues.

The occurrence of a more complex scaling in proteins
than in homopolymers is in principle not surprising. A
heteropolymer can have a ground-state (native) structure
which is not maximally compact due to the occurrence of
specific interactions which will vary with each primary
sequence [25,26]. Early studies of hydrophobicity indi-
cate that the stability of the globular state of a protein de-
pends on its composition and chain length, and that not
all chain lengths can be stabilized in spheroidal globules
[25]. Lattice heteropolymer models predict that long
chains will be stabilized in nonspherical conformations
comprising several globular domains, and therefore will
be less compact than short chains [25]. This difference in
compactness and shape for long and short heteropolymer
chains agrees qualitatively with our finding of differential
scaling in compact proteins. The transitional critical
length of n =300 residues appears to be shorter than the
values derived from polymer models with excluded
volume and hydrophobic interactions.

In order to interpret the distinct shape and size scal-
ings from another viewpoint, we have analyzed the secon-
dary structural content in our family of compact pro-
teins. Here, the content of secondary structure is simply
conveyed by the two dominant features: the percentage
of amino acid residues forming part of a helices or 8
strands. Other less dominant features, such as 3 turns,
have been omitted. The number of residues belonging to
either secondary structural motif has been extracted from
the standard PDB files. (This information is derived us-
ing the standard dihedral angles for helices or sheets
[27].) This information is not provided to the user at
every entry in the data bank. Whenever the classification
was not available, we omitted the protein from the
analysis.

Our results are summarized in Figs. 9 and 10, using the
An =50 and 10 windows, respectively. The content of
helices and strands for the most compact proteins is
shown as a function of the number of residues, #.

Even though secondary structural content is not avail-
able for all proteins in Table I, Fig. 9 gives a strong indi-
cation of a systematic change in the percentage of S8
strands and « helices for short and long compact pro-
teins. The content of B strands is almost twice as large
for the short proteins (ca. 35% vs ca. 17%, respectively).
Moreover, the change in content clearly takes place be-
tween 250 and 300 amino acids, which is close to the
number of residues where a change in scaling behavior
was found in the size and entanglements. This change in
[B-strand content seems to be accompanied by an opposite
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FIG. 9. Content of secondary structure in the most compact
proteins derived from the working set with a An =50 window.
[Note the approximate inversion in the content of a helices (dia-
monds) and S strands (squares) for the compact proteins above
and below n=~300. The actual ranges of amino acid residues
used are 20—-49, 50-99, 100-149, 150-199, . . ., 800—849.]

change in a-helical content, although the latter is more
erratic.

Figure 10 is consistent with these observations. In this
case, we note that the majority of the structures with
n > 300 have a -strand content of ca. 15-20 %, whereas
proteins with n <300 exhibit a larger content. An oppo-
site behavior is found for the percentage of helices. Once
again, the clearest separation point appears to be close to

High g-strand
content regime

Low g-strand
content regime
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FIG. 10. Content of secondary structure in the most compact
proteins derived from the working set with a An =10 window.
[Note the approximate inversion in the content of  helices (dia-
monds) and B strands (squares) for the compact proteins above
and below n=~300. The result is consistent with the one ob-
served in Fig. 9 for a larger An window. The actual ranges of
amino acid residues used are 20-29, 30-39,
40-49, ..., 820-829.]
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300 residues. The larger dispersion in Fig. 10 compared
with Fig. 9 is consistent with the inclusion of more non-
compact structures with a smaller An window.

Based on this distinct behavior, we suggest that the
short and long compact proteins available to date indeed
differ in structure. A very compact protein with fewer
than ca. 300 residues can be formed with a relatively
large percentage of 3 sheet, typically 30-40 %. When
the number of residues is over 300, such a large content
of 3 sheet does not appear to be compatible with a struc-
ture of the same degree of compactness. This difference
is possibly an expression of the known fact that longer
proteins have the capability to form stable supersecon-
dary structures, such as a/f barrels [27], which are not
accessible to small proteins. For instance, some 250 resi-
dues are needed to form a /B barrels [27]. It is therefore
conceivable that, by organizing supersecondary motifs,
long compact proteins can be stabilized in conformations
which are “more open” than the stable conformations ac-
cessible to shorter compact proteins. Supersecondary
structures for long proteins, though compact, would thus
not resemble “‘collapsed” polymer configurations.

The variation in the content of secondary structure
with chain length for compact proteins agrees with the
finding from lattice models that long compact chains can
deviate from sphericity by forming smaller stable globu-
lar domains [25]. From the present work, such domains
should exhibit a low content of B-sheet structure.
Domains with high SB-sheet content appear to provide a
less dense packing for long chains than domains with a
high a-helical content.

V. CONCLUSIONS

In this work, we have analyzed the scaling behavior of
the molecular size and the entanglements for very com-
pact proteins of variable length. The most reliable set re-
quires the choice of a relatively large An window of ami-
no acid residues and thus produces a small sample. An
acceptable compromise is found with An =50. This con-
dition leads to a set of 14 proteins, mostly involved with
transport, redox, and hydrolytic functions. Despite their
different local features, these proteins share a common
global structural feature: maximum conformational com-
pactness within a range of chain lengths. Scaling proper-
ties of this special subset have been studied in detail. Due
to the large size and variety of the initial working set (373
structures), we believe that the proteins selected are
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indeed among the most compact known to date, at least
for n <450.

Our main findings are as follows.

(a) A definite scaling for R is observed when one stud-
ies those proteins with the smallest R; values compatible
with a given range [n,n +An] of amino acid residues.
Such a scaling behavior does not exist in the initial work-
ing set of structures. For the family of compact proteins,
definite scaling is also found in the descriptors of self-
entanglements in molecular chains (the ‘“molecular
shape™).

(b) Two scaling regimes appear to take place in terms
of protein length. Compact proteins with less than 300
residues are characterized by a scaling exponent v=0. 34,
close to the value for collapsed polymers, and an entan-
glement exponent f=1.5. Longer compact proteins pro-
vide a larger v exponent and a smaller 3 exponent. This is
an indication that the longer proteins are ‘“less compact:”
a larger v value leads to bigger, more open chains. Con-
sistently, a smaller 3 value leads to smaller mean numbers
of overcrossings, i.e., chains with less complex entangle-
ments.

(c) The change in scaling regimes correlates well with a
change in the content of secondary structure. Shorter
proteins become compact by achieving a large content of
B strands. In contrast, the longer proteins are stabilized
in less compact (“noncollapsed”) structures by forming
supersecondary motifs which involve a smaller content of
sheets. One such possible motif is an a /B barrel [27].

In conclusion, the present work proposes some rela-
tionships among the number of residues, the radius of
gyration, the entanglement complexity, and the content
of secondary structure needed to form a very compact
(possibly “collapsed”) polypeptide. We believe that these
results should be valuable for a better understanding of
protein folding features [28,29], the structure of dynamic
intermediates [3,30,31], and for improvements in the de
novo synthesis of proteins [32].

ACKNOWLEDGMENTS

I thank Professor S. G. Whittington (Toronto) for
sending his manuscript of Ref. [15] prior to publication
and M. Payette (Sudbury) for his collaboration in com-
puting shape descriptors for protein backbones. This
work has been supported by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada.

[11K. A. Dill and D. Shortle, Annu. Rev. Biochem. 60, 795
(1991).

[2] J. M. Thornton, Curr. Opinion Struct. Biol. 2, 888 (1992).

[3] V. E. Bychkova and O. B. Ptitsyn, Chemtracts-Biochem.
Mol. Biol. 4, 133 (1993).

[4] G. A. Arteca and P. G. Mezey, Biopolymers 32, 1609
(1992).

[5] E. J. Janse van Rensburg, D. W. Sumners, E. Wasserman,
and S. G. Whittington, J. Phys. A 25, 6557 (1992).

[6] G. A. Arteca, Biopolymers 33, 1829 (1993).

[7] G. A. Arteca, J. Phys. Chem. 97, 13 831 (1993).

[8] G. A. Arteca, Phys. Rev. E 49, 2417 (1994).
[9] P.-G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1985).
[10] P. J. Flory, Statistical Mechanics of Chain Molecules (In-
terscience, New York, 1969).
[11]J.-C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976
(1980).
[12] H. E. Stanley, J. Phys. A 10, L211 (1977).
[13] I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev.
Mod. Phys. 50, 683 (1978).
[14] P. Biswas and B. J. Cherayil, J. Chem. Phys. 100, 4665



2610 GUSTAVO A. ARTECA 51

(1994).

[15] E. Orlandini, M. C. Tesi, S. G. Whittington, D. W.
Sumners, and E. J. Janse van Rensburg, J. Phys. A 27,
L1333 (1994).

[16] L. L. Walsh (personal communication).

[177H. S. Chan and K. A. Dill, Macromolecules 22, 4559
(1989).

[18] E. Shakhnovich and A. Gutin, J Chem. Phys. 93, 5967
(1990).

[19] J. D. Honeycutt and D. Thirumalai, Proc. Nat. Acad. Sci.
U.S.A. 87, 3526 (1990).

[20] H. S. Chan and K. A. Dill, J. Chem. Phys. 95, 3775 (1991).

[21] The whole list of the proteins in the study can be obtained
upon request to the author.

[22] The one point completely outside the main cluster corre-
sponds to a very unusual structure: the muscle protein
tropomyosin (coded 2TMA), which is a 284-residue 97%
a-helical coiled coil. This is the only example we found in
the PDB of a very long, purely helical structure.

[23] T. G. Dewey, J. Chem. Phys. 98, 2250 (1993).

[24] S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534
(1985).

[25] K. A. Dill, Biochemistry 24, 1501 (1985).

[26] M. Karplus and E. Shakhnovich, in Protein Folding, edit-
ed by T. E. Creighton (Freeman, New York, 1992).

[27] C. Brandén and J. Tooze, Introduction to Protein Structure
(Garland, New York, 1991).

[28] C. Chothia and A. V. Finkelstein, Annu. Rev. Biochem.
50, 537 (1990).

[29] D. T. Jones, W. R. Taylor, and J. M. Thornton, Nature
358, 86 (1992).

[30] V. Daggett and M. Levitt, Proc. Nat. Acad. Sci. U.S.A.
89, 5142 (1992).

[31] V. Daggett and M. Levitt, Curr. Opinion Struct. Biol. 4,
291 (1994).

[32]J. S. Richardson and D. C. Richardson, in Proteins: Form
and Function, edited by R. A. Bradshaw and M. Purton
(Elsevier, Cambridge, England, 1990).



